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The local-similarity method is used to find numerical solutions of the equations 
of motion and energy in a circular tube with blowing. 

Investigation of the heat transfer and drag in laminar flow in tubes with permeable 
walls, taking variability of the physical properties into account, has attracted attention, 
as Usual, in connection with its wide practical applications in various fields of modern 
engineering, and a large number of publications have now been devoted to this subject. The 
motion of a fluid with variable physical properties in a tube with permeable walls was con- 
sidered in [i, 2], in which only the results calculated for the thermal characteristics of 
the flow were given. 

The known methods of theoretical solution of these problems may be divided into two 
groups. The first group consists of methods based on approximate separation of variables 
and may be used to calculate the flow in regions of hydrodynamic and thermal quasistabiliz- 
ation; the most systematic application of this approach is to be found in [3]. The other 
groups collects together works (e.g., [4-7, i]) in which partial differential equations are 
solved by the finite-difference method. This solution yields more complete information on 
the flow including the inlet region; however, such calculations are considerably more 
laborious than obtaining a solution for quasideveloped flow, and therefore its use in 
engineering practice may lead to definite difficulties. 

The main drawback of the approach based on variable separation is, as noted in [8, 9], 
the considerable error in determining the frictional drag. This is because of the complete 
neglect of convective terms in the equation of motion; the most important of these, accord- 
ing to [8], is the transverse convection associated with the appearance of a radial velocity 
induced by the variation in density. The inclusion of the radial velocity in a one-dimen- 
sional calculation scheme, as in [8], is a fairly artificial method, and its importance may 
onlybe determined empirically, by comparison with experiment&l data. In [i0], it was sug- 
gested that a method taking the flow history and convective transfer in the axial direction 
into account may be developed for the quasideveloped-flow region. On this basis, the pres- 
ent work attempts to develop the calculation scheme of [3] so as to take account of dynamic 
effects in the axial direction, which are no less important than the effects of radial con- 
vection and may be taken more systematically into account in the framework of a one-dimen- 
sional method. The method of solution adopted is also used to solve the equations of 
energy and motion for blowing through porous walls. 

Consider steady axisymmetric motion in a circular tube with boundary conditions of the 
second kind and a blowing velocity at the wall constant over the length. The system of 
equations describing mass, momentum, and heat transfer in the boundary-layer-theory approxi- 
mation, disregarding energy dissipation, takes the form 

O(pux) + 1 O(rOUr) _ O, (1)  

Ox r Or 
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Fig. i. Velocity (a) and temperature (b) distribution 
over tube cross section; the continuous curves corres- 
pond to Re V=-15 and the dashed curves to Re V=O; ~ =i 
(i), 1.35 (2), 0.5 (3). 

Ou~ Ou r _ dp + 1 0 [ Ou~ ) 
~u~-ox  +,ou, Or dx r Or ~ r ~  , (2) 

01~ Oh 1 0 ( rk . O;_ ) 
Ou~---~- x + Ou, O~- -- ~ a~- " (3) 

Integrating the continuity equation -- Eq. (i) -- over the tube cross section yields 
the variation in mean velocity over the length, which, according to the definition Um = pw/ 

Pm, is 

dU~____! = __ 2pwV~v U m  dp___~ (4) 

dx pmro Pm dx 

The first term in Eq. (4) describes the variation in mean velocity due to blowing, 
and the second the variation due to the variable density produced by heating or cooling of 
the liquid. 

Taking account of Eq. (i), Eq. (3) yields the heat-balance equation 

dh~ - 2 [ ~ (  OT ) +pwV~(h~--h~)]= 2q~v (5) 
dx rop w . ~ ~=r. ropw 

In Eq. (5) it is assumed that, in the presence of blowing, the total heat-flux density 
through the wall due to heat conduction and convection is known. 

Neglecting the pressure dependence of the physical properties in comparison with the 
temperature dependence, which does not lead to appreciable error at subsonic flow velocities 
and in the region of state parameters far from the saturation curve, Eq. (4) is written in 
the form 

dUm _ 2p~V~ 2qw ( OP ) 
dx omro ro~mP~ - - ~  �9 (6) 

Below, the flow of a perfect gas will be considered, assuming the Clapeyron--Mendeleev 
equation of state 

p = RoT. (7) 

Using Eqs. (5)-(7), assuming that the derivative 3h/3x is constant over the tube cross 
section, and adopting the local-similarity hypothesis, which is widely used in calculations 
of quasideveloped flow, i.e., introducing a relation of the form ux/U m= f(~), solution of 
the system of partial differential equations in Eqs. (1)-(3) may be approximately reduced 
to solving the dimensionless ordinary differential equations 
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Fig. 2. Dependence of frictional drag (a) -- Re v = 0 (i, 
5, 6), 5 (2), i0 (3), and 20 (4) -- and hydraulic drag 
(b) -- Rev=0 (i), 5 (2), i0 (3), 15 (4), and 20 (5) -- 
on temperature factor. 
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Here 

7 =  r ~ = u ~ p f  ; ~ _  u ~ .  ~= v .  ~= ~ . ~= ~ . 
re 9~ V~ T~, 9~ ~ 

~=__~ ," ~v = c~: ," N ~ . = - - C P ~ . ,  K =  __r~95 dp 
~ ~w cpm 9wpMt~ dx 

In the absence of blowing (Re V = 0), the only significant difference between the present 
method of calculation and that of [3] is that explicit account is taken of the convective 
term in Eq. (9) describing flow acceleration on heating (deceleration on cooling); in [3] 
this term is combined with the pressure gradient. Estimates show that separation of the 
convective term is expedient at high heat fluxes, when inertial terms are found to be com- 
parable with viscosity terms as a result of the density variation. 

The system in Eqs. (8)-(10) was solved by the trial-and-error method, with iterations 
for the following boundary conditions 

7 = o ~ _ _  ~--~- oY o; ~ = 1 ~ = o ,  Y=I .  
07 Or 

The parameters adopted are the dimensionless heat flux QW and the Reynolds number RV 
for the flux at the wall. The dimensionless pressure gradient is determined using the con- 

I 

dition that ]r=l when ~=i or, according to Eq. (8), Irpu~dr=I/2 . Calculations are made 

0 

for air, the properties of which are determined from the approximate formulas of [6]. 

The results obtained for the velocity and temperature distribution over the tube 
cross section are shown in Fig. i. It is evident from Fig. la that the effect of variable 
physical properties on the velocity distribution is much stronger in the case of blowing 
than for constant flow rate. However, in contrast to [3], the velocity profile for Re V = 0 
becomes fuller in the case of heating, and somewhat less full on cooling. An interesting 
feature of the velocity distribution with blowing and heating is the shift of the maximum 
of Ux from the tube axis to the wall with increase in Re V and 0. This is because increase 
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in blowing intensity is associated with rise in the negative pressure gradient responsible 
for the acceleration of the light gas in the near-wall region. An analogous effect was 
observed experimentally for a permeable plate in [ii] with injection of a lower-density gas 
(helium) into an air flow. The effect of variable physical properties on the temperature 
distribution in tubes with impermeable and permeable walls is qualitatively the same, and 
consists in reduction in fullness of the profile on heating and increase on cooling. 

In Fig. 2, results obtained for the frictional drag and hydraulic drag are shown. 
The dashed curve (curve 6) shows the dependence for the frictional drag at Re V = 0 obtained 
from a calculation disregarding thermal acceleration or deceleration of the flow, which is 
equivalent to the method of [3]. As is evident from Fig. 2, taking axial convection into 
account in the equation of motion has a significant effect on the dynamic characteristics 
of the flow. Acceleration of the flow on heating leads to a marked increase in both the 
frictional drag and the total hydraulic drag. The dependence of the frictional coefficient 
on the temperature factor obtained when acceleration (deceleration) of the flow is taken 
into account (curve i) is in considerably better agreement with the results of two-dimen- 
sional solution [4] (curve 5) and experimental data [8] than the corresponding dependence 
neglecting axial convection. On cooling, the recovery in pressure head due to slowing of 
the flux leads to sharp decrease in the hydraulic drag. In the case of blowing, as for 
Rev = 0, heating leads to considerable increase, and cooling to decrease, in the friction 
and hydraulic drag. 

Calculations show that the blowing velocity in the range --20~Re V ~0, the effect of 
variable physical properties on the Nusselt number is slight. Therefore, results obtained 
for constant physical properties may be used to calculate the heat transfer. 

NOTATION 

Ux, Ur, axial and radial velocity components; p, pressure; h, enthalpy; T, temperature; 
p, density; ~, dynamic viscosity; %, heat conduction; CD, specific heat: ro. tube radius; 
qw, heat-flux density at wall; Tw, wall shear stress; Vw, blowing velocity (V W < 0~- 0 = 

fO "f0 

Tw/Tm, temperature factor; Pr W = ~WCpW; Sw = 2 ~ Puxrdr/r~ , mass velocity; h m = 2 i 
0 b 

2---- 
hpuxrdr/ropw , mean-mass enthalpy; Tm; temperature corresponding to mean enthalpy; Re m = 
2p~o/~m, axial Reynolds number; Re V =2VwPw/~W ~ radial Reynolds number; QW = 2qwroTwcDw~w, 
dimensionless heat flux at wall; ~m = 8TWPm/PW , frictional-drag coefficient; ~m = --($roPm/ 
p~)dp/dx, hydraulig-drag coefficient) R, universal gas constant. Indices: W, m, values 
determined at wall temperature T W and mean-mass temperature T m. 
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EFFICIENCY OF POROUS COOLING 

V. D. Daragan, A. Yu. Kotov, 
G. N. Mel'nikov, and A. V. Pustogarov 

UDC 537.523.5:536.24 

The authors present results of a numerical analysis of the efficiency of porous 
cooling of a cylindrical tube with one-sided heating, accounting for the thermo- 
physical properties being temperature dependent. 

The efficiency of transpiration or porous cooling of structural elements is determined 
by the thermophysical and hydraulic characteristics of the porous material and by the type 
and mass flow rate of the coolant [i]. A well-founded choice of material and coolant ensures 
operational capability of thermally stressed structural elements, e.g., the arc-stabilizing 
porous tubes of interelectrode inserts (IEI) of plasmatrons, at the optimal coolant flow 
rates. 

The results of investigations of processes of heat transfer and hydrodynamics in porous 
media have been correlated in [2, 3]. The main studies have been a filtration regimes in 
conditions with comparatively small temperature drop, up to 100~ through the wall thickness. 
The specific mass flow rate of gas through the porous wall of the IEI tube reaches 500 kg/ 
m2.sec (air), and the heat flux to the wall reaches 108 W/m 2. In these conditions the 
temperatures of the material and the coolant vary through the wall thickness from the tem- 
perature of the gas or liquid at the entrance to the test facility, up to the limiting work- 
ing temperature of the material, e.g., from liquid nitrogen temperature (77~ to the limit- 
ing working temperature of tungsten (2900~ It becomes particularly important in this 
case to allow for the dependence of the properties of the material and the coolant on tem- 
perature in resolving the thermal and hydraulic problems of porous cooling. 

The system of equations for heat transfer and hydrodynamics in a porous nondeformable 
medium, neglecting viscous dissipation and the kinetic energy of the gas relative to the 
thermal, and assuming an optically thin layer of coolant, in the one-dimensional approxima- 
tion for a cylinder, has the form (the computational scheme is shown in Fig. I): 

1 d dT~ 
r dr dr 

dT~, 
c /n  o - ~ o  ( T ~  - -  T ~ . ) ,  

dr 

P 

RTg 

As the basic dependence of a v on m we take 

cz v(T w -  Tg) = O, (i) 

dP m m ~ 
=.-- oqt @ [ ~ - - ,  (2) 

dr 9 9 

O (3) 
2~r 

0% == 0.029 Re 1' 8%J(l~/~)~- 

The boundary conditions are as follows: 
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